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Problem setup

minimize
x

f (x ; S(x))

subject to: x ∈ D ⊂ Rn

where the objective f depends on the output(s) from a simulation S(x).

I Derivatives of S may not be available
I Constraints defining D may or may not depend on S
I The dimension n is small
I Evaluating S is expensive
I f and/or S may be noisy. If the noise is stochastic,

minimize
x

E
[
f̄ (x)

]
.
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Initial approaches

I Grid over the domain (easily parallelizable)

I Random sampling (easily parallelizable)

I Evolutionary Algorithms (many are parallelizable)
I Genetic Algorithm
I Simulated Annealing
I Particle Swarm
I Ant Colony Optimization
I Bee Colony Optimization
I Grey Wolf Optimization
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DFO warnings
I Be careful

1) A problem can be written as a scalar output, black box

2) An algorithm exists to optimize a scalar output, black box function

1) and 2) true doesn’t mean the algorithm should be used

minimize
x

f (x) = ‖Ax − b‖

I If your problem has derivatives, please use them. If you don’t have them. . .
I Algorithmic Differentiation (AD) is wonderful

I Does the problem have structure? Avoid black boxes
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Approximate Gradients
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DFO warnings

I Be careful
1) A problem can be written as a scalar output, black box

2) An algorithm exists to optimize a scalar output, black box function

1) and 2) true doesn’t mean the algorithm should be used

minimize
x

f (x) = ‖Ax − b‖

I If your problem has derivatives, please use them. If you don’t have them. . .
I Algorithmic Differentiation (AD) is wonderful

I Does the problem have structure? Avoid black boxes
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Opening up the black box
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Serial** PSO

Serial Simplex

Serial POUNDERS

1024−Core PSO

Tuning quadrupole moments for a particle accelerator simulation.

f (x) =

r∑
i=1

(Fi (x)− Ti )
2

Can either have a solver that uses f (x) or [F1(x), . . . ,Fr (x)].
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Opening up the black box
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POUNDER

POUNDER warm

POUNDERS

POUNDERS warm

Energy density functional calibrations.

F (x) : R16 → R2049

2n experimental design
around starting point

14 of 25
.



Opening up the black box
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F (x) : R16 → R2049
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Opening up the black box
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All Ders.

Constraint Ders.

No Ders.

No Structure

Small gas network problem.

I 15 variables
I 11 constraints

I ∇x f and ∇xc
I f and ∇xc
I f and c

(separate)
black boxes

I Penalizing
constraints
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Exploiting Structure

I Nonsmooth, composite optimization

minimize
x

f (x) = h(F (x))

where ∇F is unavailable but ∂h is known

Example

f (x) =

r∑
i=1

|di −max {ci ,Fi (x)}|

16 of 25
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Nonsmooth, composite optimization
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Motivation

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.
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Global DFO

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.
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Multistart Methods

I Explore by random sampling from the domain D
I Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

+ Get to use (more developed) local optimization routines.
I least-squares objectives, nonsmooth objectives, (un)relaxable

constraints, and more

+ Increased opportunity for parallelism
I objective, local solver, and global solver

- Can require many sequential evaluations for the local solver
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Multistart Theory

I f ∈ C 2, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

5 log kN
kN

(1)

Theorem
If rk is defined by (1), even if the sampling continues forever, the total
number of local searches started is finite almost surely.

22 of 25
.



APOSMM
Iteration: 0; r_k: Inf

23 of 25
.



APOSMM
Iteration: 1; r_k: 0.743

23 of 25
.



APOSMM
Iteration: 2; r_k: 0.743

23 of 25
.



APOSMM
Iteration: 3; r_k: 0.689

23 of 25
.



APOSMM
Iteration: 4; r_k: 0.643

23 of 25
.



APOSMM
Iteration: 5; r_k: 0.605

23 of 25
.



APOSMM
Iteration: 6; r_k: 0.605

23 of 25
.



APOSMM
Iteration: 7; r_k: 0.605

23 of 25
.



APOSMM
Iteration: 8; r_k: 0.605

23 of 25
.



APOSMM
Iteration: 9; r_k: 0.605

23 of 25
.



APOSMM
Iteration: 10; r_k: 0.605

23 of 25
.



APOSMM
Iteration: 35; r_k: 0.605

23 of 25
.



APOSMM
Iteration: 36; r_k: 0.605

23 of 25
.



APOSMM
Iteration: 37; r_k: 0.589

23 of 25
.



APOSMM
Iteration: 38; r_k: 0.574

23 of 25
.



APOSMM
Iteration: 39; r_k: 0.560

23 of 25
.



APOSMM
Iteration: 40; r_k: 0.548

23 of 25
.



APOSMM
Iteration: 41; r_k: 0.536

23 of 25
.



APOSMM
Iteration: 42; r_k: 0.525

23 of 25
.



APOSMM
Iteration: 43; r_k: 0.515

23 of 25
.



APOSMM
Iteration: 44; r_k: 0.497

23 of 25
.



APOSMM
Iteration: 45; r_k: 0.480

23 of 25
.



APOSMM
Iteration: 80; r_k: 0.281

23 of 25
.



APOSMM
Iteration: 81; r_k: 0.279

23 of 25
.



APOSMM
Iteration: 82; r_k: 0.276

23 of 25
.



APOSMM
Iteration: 83; r_k: 0.274

23 of 25
.



APOSMM
Iteration: 84; r_k: 0.272

23 of 25
.



APOSMM
Iteration: 85; r_k: 0.270

23 of 25
.



APOSMM
Iteration: 86; r_k: 0.268

23 of 25
.



APOSMM
Iteration: 87; r_k: 0.266

23 of 25
.



APOSMM
Iteration: 88; r_k: 0.264

23 of 25
.



APOSMM
Iteration: 89; r_k: 0.263

23 of 25
.



APOSMM
Iteration: 90; r_k: 0.262

23 of 25
.



APOSMM
Iteration: 91; r_k: 0.261

23 of 25
.



APOSMM
Iteration: 92; r_k: 0.260

23 of 25
.



APOSMM
Iteration: 93; r_k: 0.259

23 of 25
.



APOSMM
Iteration: 94; r_k: 0.258

23 of 25
.



APOSMM
Iteration: 95; r_k: 0.257

23 of 25
.



APOSMM
Iteration: 96; r_k: 0.256

23 of 25
.



APOSMM
Iteration: 97; r_k: 0.255

23 of 25
.



APOSMM
Iteration: 98; r_k: 0.255

23 of 25
.



APOSMM
Iteration: 99; r_k: 0.254

23 of 25
.



DFO warnings

I Be careful
1) A problem can be written as a scalar output, black box

2) An algorithm exists to optimize a scalar output, black box function

1) and 2) true doesn’t mean the algorithm should be used

minimize
x

f (x) = ‖Ax − b‖

I If your problem has derivatives, please use them. If you don’t have them. . .
I Algorithmic Differentiation (AD) is wonderful

I Does the problem have structure? Avoid black boxes
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Scientific Motivation

I Simulations that need optimization

I Simulations are computationally expensive and noisy

I Want more than just a local minimum

I Multiple evaluations are often possible

I Evaluation times vary

I Nonsmooth functions (of the simulation)

I Stochastic simulations

I Multiple objectives (e.g., operational cost and collision energy)

I Computational cost that is a function of some variable(s)
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